首页> 外文OA文献 >Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET)
【2h】

Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET)

机译:暴露于变化的线性能量转移(LET)的电离辐射后,对人体细胞系统中复杂的DNA损伤诱导和修复的测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3–1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5–16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.
机译:电离辐射(IR)的有害影响与IR诱导复杂DNA损伤的效率变化有关。双链断裂(DSB)可被视为复杂DNA损伤的较简单形式。这些类型的损害可能包括DSB,单链断裂(SSB)和/或非DSB损害,例如基础损害和嘌呤/嘧啶(AP;无碱基)位点的不同组合。引人入胜的理论(蒙特卡罗模拟)和实验证据表明,DNA损伤的复杂性增加,因此通过线性能量转移(LET)可以修复抗性。在这项研究中,我们使用免疫荧光的适应性测量了DSB和非DSB氧化簇的诱导和加工。具体而言,我们应用病灶共定位方法作为原位检测各种人类正常(FEP18-11-T1)和修复效率各异的癌细胞系(MCF7,HepG2,A549,MO59K)中成簇的DNA损伤的最新方法/ J)和增加的LET的辐射质量,即γ-,X射线0.3–1 keV /μm,α粒子116 keV /μm和36Ar离子270 keV /μm。使用γ-H2AX或53BP1病灶染色作为DSB探针,我们计算出随着LET的降低,DSB的表观速率为5–16 DSB /细胞/ Gy。使用针对人类修复酶8-氧鸟嘌呤-DNA糖基化酶(OGG1)或AP内切核酸酶(APE1)的抗体检测到的非DSB氧化性基础病变的测量趋势相似,这是分别作为氧化嘌呤或脱碱基位点探针的损伤灶。此外,使用我们小组先前引入的共定位参数,我们发现DSB和非DSB的损害聚集性在增加。我们还将损伤复杂性与每种细胞系的修复效率相关联,并且由于其DNA损伤的复杂性质,我们就IR的严重性讨论了这些新发现的生物学重要性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号